skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Yifan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. Free, publicly-accessible full text available June 1, 2026
  3. Attracting students to computing is crucial for advancing the development of new skills and fostering positive attitudes toward the field, especially among females and minoritized populations. One promising approach involves integrating computing with artistic activities, such as music. This study examines how learner’s prior experiences influence their participation in a virtual summer camp on coding with music. The study also examines how participation in the camp influences participants' attitudes about computing, with an eye toward gender differences. Data were collected through participant surveys (N=73) and focus groups (N=48). Findings suggest that parents’ and guardians' involvement is crucial for participation and integrating coding with artistic work holds promise for attracting students to the field. Findings can inform possible paths to engaging students in computing. 
    more » « less
    Free, publicly-accessible full text available April 30, 2026
  4. Free, publicly-accessible full text available December 4, 2025
  5. Abstract Previous research has demonstrated significant inter-individual variability in the recruitment of the fast-explicit and slow-implicit processes during motor adaptation. In addition, we previously identified qualitative individual differences in adaptation linked to the formation and updating of new memory processes. Here, we investigated quantitative and qualitative differences in visuomotor adaptation with a design incorporating repeated learning and forgetting blocks, allowing for precise estimation of individual learning and forgetting rates in fast-slow adaptation models. Participants engaged in a two-day online visuomotor adaptation task. They first adapted to a 30-degree perturbation to eight targets in three blocks separated by short blocks of no feedback trials. Approximately 24 hours later, they performed a no-feedback retention block and a relearning block. We clustered the participants into strong and weak learners based on adaptation levels at the end of day one and fitted a fast-slow system to the adaptation data. Strong learners exhibited a strong negative correlation between the estimated slow and fast processes, which predicted 24-hour retention and savings, respectively, supporting the engagement of a fast-slow system. The pronounced individual differences in the recruitment of the two processes were attributed to wide ranges of estimated learning rates. Conversely, weak learners exhibited a positive correlation between the two estimated processes, as well as retention but no savings, supporting the engagement of a single slow system. Finally, both during baseline and adaptation, reaction times were shorter for weak learners. Our findings thus revealed two distinct ways to learn in visuomotor adaptation and highlight the necessity of considering both quantitative and qualitative individual differences in studies of motor learning. 
    more » « less
    Free, publicly-accessible full text available November 3, 2025
  6. Preparing long-range entangled states poses significant challenges for near-term quantum devices. It is known that measurement and feedback (MF) can aid this task by allowing the preparation of certain paradigmatic long-range entangled states with only constant circuit depth. Here, we systematically explore the structure of states that can be prepared using constant-depth local circuits and a single MF round. Using the framework of tensor networks, the preparability under MF translates to tensor symmetries. We detail the structure of matrix-product states (MPSs) and projected entangled-pair states (PEPSs) that can be prepared using MF, revealing the coexistence of Clifford-like properties and magic. In one dimension, we show that states with Abelian-symmetry-protected topological order are a restricted class of MF-preparable states. In two dimensions, we parametrize a subset of states with Abelian topological order that are MF preparable. Finally, we discuss the analogous implementation of operators via MF, providing a structural theorem that connects to the well-known Clifford teleportation. Published by the American Physical Society2024 
    more » « less
  7. The demand for clean energy production and storage has increased interest in molten salt technologies, including Molten Salt Reactors (MSR). Understanding of how molten salts properties change with respect to temperature and structure is vital to establishing efficient, cost effective MSR systems. Research into these materials however has been limited due to the difficulty in accurately measuring properties of these reactive materials at elevated temperatures and controlled environment in a time efficient way. Much research has turned to molecular dynamic (MD) modeling to alleviate these issues. This research presents a custom fabricated falling ball viscometer system for measuring molten salt viscosity quickly. A model for correlating velocity to viscosity for Re < 300 was also developed for use with this system. The viscometer is demonstrated on eutectic FLiNaK and NaF-ZrF4 (53–47 mol%) up to 150 K above the respective melting points. The results are compared to MD simulations to verify their effectiveness for predicting viscosity and previously reported measurements. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  8. Code summarization is the task of creating short, natural language descriptions of source code. It is an important part of code comprehension and a powerful method of documentation. Previous work has made progress in identifying where programmers focus in code as they write their own summaries (i.e., Writing). However, there is currently a gap in studying programmers’ attention as they read code with pre-written summaries (i.e., Reading). As a result, it is currently unknown how these two forms of code comprehension compare: Reading and Writing. Also, there is a limited understanding of programmer attention with respect to program semantics. We address these shortcomings with a human eye-tracking study (n= 27) comparing Reading and Writing. We examined programmers’ attention with respect to fine-grained program semantics, including their attention sequences (i.e., scan paths). We find distinctions in programmer attention across the comprehension tasks, similarities in reading patterns between them, and differences mediated by demographic factors. This can help guide code comprehension in both computer science education and automated code summarization. Furthermore, we mapped programmers’ gaze data onto the Abstract Syntax Tree to explore another representation of human attention. We find that visual behavior on this structure is not always consistent with that on source code. 
    more » « less
  9. Free, publicly-accessible full text available December 1, 2025
  10. By tuning the composition of the non-solvent bath used in the non-solvent induced phase inversion process for fabricating thick and low-tortuosity battery electrodes, optimal electrochemical performances and compressive modulus were achieved. 
    more » « less